
Middleware Support for Seamless Multimedia Home Entertainment
for Mobile Users and Heterogeneous Environments

Marco Lohse and Philipp Slusallek
Computer Graphics Lab, Department of Computer Science

Saarland University, Saarbrücken, Germany
{mlohse, slusallek}@cs.uni-sb.de

ABSTRACT
The emergence of mobile devices in multimedia home en-
tertainment demands new application scenarios like ubiqui-
tous multimedia access. However today’s home entertain-
ment appliances are usually based on a closed hardware
and software design and do not provide the extensibility
and flexibility needed.

In this paper, we present a middleware that allows
to control and connect distributed and mobile multime-
dia devices with different underlying technology. Based
on this middleware we demonstrate an extensible applica-
tion framework for a multimedia home entertainment cen-
ter. This framework provides session hand off for seam-
less multimedia playback in heterogeneous environments
where users with mobile devices can transparently exploit
the capabilities of nearby stationary systems.

KEY WORDS
Distributed Multimedia Systems, Mobile Multimedia,
Multimedia Home Entertainment Applications

1 Introduction

The market for home entertainment systems is currently
dominated by inflexible, proprietary, and closed hardware
and software systems. While traditional systems like radio,
TV, and CD players are still widely used, there is a clear
trend towards media convergence, where most of the home
entertainment options will be based on digital media exist-
ing in various formats.

With the availability of cheap, small, quiet, and pow-
erful multimedia PCs on the one side, and programmable
mobile devices like PDAs on the other side, it is now pos-
sible to create an open and extensible platform for multi-
media home entertainment. In such a scenario, the user
can use a mobile device to access multimedia data and
then transparently use the resources of stationary devices
for media decoding and playback.

In this paper, we describe a flexible application frame-
work supporting such scenarios. The framework is built
on top of the Network-Integrated Multimedia Middleware
(NMM) that allows to locate and control distributed mul-
timedia devices and software components of different un-
derlying technology. Furthermore, local and remote com-

ponents can be integrated into a common flow graph of pro-
cessing units.

The overall system architecture consists of stationary
Linux PC-based systems that provide an integrated solution
for playing CDs or DVDs, TV access with time-shifting,
browsing and playback for various supported media for-
mats, and features like transcoding to different media for-
mats. The architecture supports the use of remote devices
like special hardware (e.g. a board for receiving digital
TV) and the distribution of time consuming tasks like video
transcoding to remote systems using the facilities of the un-
derlying middleware. Additionally, users can initiate play-
back on mobile devices, or transparently hand off playback
sessions to stationary systems in order to access their com-
putational resources and rich I/O capabilities (e.g. high-
quality audio output or video rendering on large displays).
Furthermore, the usage of the underlying middleware also
allows to present the same user interface and interaction
possibilities on stationary and mobile devices.

2 Related Work

Today’s common multimedia middleware such as Direct-
Show from Microsoft [1], Apple’s Quicktime [2], or the
Java Media Framework from Sun [3] adopt a PC-centric
approach that only supports access to directly connected
devices. The network is mostly used as a data source.

Current distributed multimedia systems are mostly
based on exiting middleware for distributed object comput-
ing (DOC) like OMG’s CORBA [4]. These frameworks
extend this middleware with several properties needed in
a distributed multimedia environment. One example are
the Multimedia System Services (MSS) [5] that are based
on the ISO Presentation Environment for Multimedia Ob-
jects (PREMO) [6]. In contrast, the multimedia architec-
ture described in this paper allows the transparent usage
of different networking and middleware technologies (like
CORBA) which is especially important in heterogeneous
scenarios.

Standards for device discovery in a home networking
environment like Sun’s Jini [7] and HAVi [8] only partly
solve the requirements mentioned above. Nevertheless,
these technologies could be transparently integrated into
our middleware using suitable proxies (see Section 3).

Some PC-based home entertainment centers have re-
cently been introduced, but are still restricted to operate on
a single host [9] or concentrate on the application of using
remote and local storage together with Internet connectiv-
ity [10]. On the other side, the Multimedia Home Platform
(MHP) [11] aims at enhancing the basic TV functionality
with interactive content but still needs a middleware – like
the one described in this paper – to operate on.

The idea of accessing multimedia data on nearby sta-
tionary systems is also presented in [12]. However, this ap-
proach is restricted to the IEEE 1394 networking technol-
ogy. An OSGi compatible solution for location dependent
playback of multimedia data is described in [13]. While
OSGi provides a standard way to connect devices such as
home appliances it does not provide facilities especially
needed for handling multimedia, e.g. synchronization [14].
Therefore, the cited approach uses third-party components
for streaming and playback of multimedia data and does
not provide the extensibility provided by our multimedia
middleware and application framework.

Other middleware solutions study architectural sup-
port for context-aware applications in terms of sensing the
environment [15]. We are not discussing these topics in
the scope of this paper, but assume that the application has
knowledge about its environment – either by means of user
interaction or simple location sensing via infrared transmit-
ters.

3 Underlying Middleware

The Network-Integrated Multimedia Middleware
(NMM) [16] allows to control distributed multimedia
devices and software components and to integrate local
and remote components into a common flow graph. The
architecture offers an open architecture that does not rely
an a particular technology or middleware but allows for
the flexible usage of different networking and middleware
technologies. Together, this offers following advantages.

• Support for heterogeneous environments through the
usage of mediating proxy objects and parameterizable
communication strategies. This also allows to inte-
grate emerging new technologies easily.

• Explicit binding allows to chose the communication
strategy independently for the transmission of multi-
media data and the controlling of components. Appro-
priate parameters can be set for every connection.

• Usage of optimized communication strategies. This
removes the overhead of the middleware for locally
running parts of the application. Also, platforms with
restricted resources, like PDAs, can be integrated by
using light-weight transport strategies.

• Reflection and event notification. All components can
be queried for their supported functionality and the
application can register to be notified when a certain
event occurs.

Node

Application

E BB

process()

B B

EE

InputJack OutputJack

B
E E

E
handle()

Figure 1. Node with input and output jack; messages (’E’
event, ’B’ buffer) are sent instream and out-of-band.

In the following we briefly describe the features of
the NMM architecture that form the basis on which the
multimedia home-entertainment center is created. NMM
is implemented in C++ and runs under Linux. The NMM
framework and applications are available as Open Source
(see www.networkmultimedia.org).

3.1 Basic Concepts

The design approach of the local operating NMM ar-
chitecture is similar to other architectures, e.g. the Java
Media Framework, which makes it possible to integrate
these technologies into our architecture as described be-
low. Within NMM, all hardware devices (e.g. a DVD-ROM
drive) and software components (e.g. decoders) are repre-
sented by so called nodes (see Figure 1). Nodes have prop-
erties that include its input and output ports, called jacks,
together with their supported multimedia formats. The in-
nermost loop of a node produces data, performs a certain
operation on the data, or finally consumes data. These
nodes can be connected to create a flow graph, where every
two connected nodes support the same format. The struc-
ture of this graph then specifies the operation to be per-
formed.

The NMM architecture uses a uniform message sys-
tem for all communication. There are two types of
messages. Multimedia data is placed into messages of
type buffer that are streamed across connected jacks. In
contrast messages of type event forward control informa-
tion such as a change in speaker volume. Events are iden-
tified by a name and can include arbitrary typed parame-
ters. Events can be generated within nodes and are then
forwarded instream just like buffers, or they can be sent
between the application and nodes (out-of-band). Instream
messages are queued within the jacks of a node; out-of-
band events are handled synchronous.

The unified message system allows for registering an
application as listener: the application will then be notified
when a certain event occurs at a node. Furthermore, the

message system provides reflection: nodes can be queried
for all events they can handle together with their param-
eter types. Additionally, nodes can dynamically add and
remove the ability to handle certain events.

We consider the reflection property and the possibil-
ity to register additional listeners to be essential parts of
a multimedia middleware. This is especially important in
distributed environments where new devices with unknown
properties may become available at any time.

The framework offers facilities for efficient memory
management, scheduling, and a sophisticated state machine
for all processing nodes. Mechanisms for synchronizing
different media streams with QoS control are also provided.
Generic base classes exist that simplify the integration of
new processing units and codecs by inheriting from a suit-
able class and only implementing the specific multimedia
processing code.

3.2 Distributed Proxy Architecture

While the approach described above is similar to other mul-
timedia middleware that operates on a single host only, our
architecture allows to transparently use distributed nodes
with different underlying device and networking technol-
ogy. To achieve this, objects like the NMM nodes and
jacks are controlled via proxy objects. Proxy objects allow
for redirecting events to and from remote objects. Further-
more, proxies can act as translators between different tech-
nologies and allow to integrate middleware like the Java
Media Framework (JMF) into NMM [16] by means of me-
diating proxies that translate between the different middle-
ware APIs and protocols.

Finally, proxies are used to provide object oriented
interfaces that allow to control objects by simply invoking
methods on such interfaces, which is more type-safe then
sending events. These interfaces are described in an inter-
face definition language (IDL) that is similar to CORBA
IDL. For each interface defined in the IDL, an interface
class and an implementation class is generated by an IDL
compiler. Internally, these classes use events, and there-
fore also provide the possibility to notify any listener. Dur-
ing runtime, any supported interfaces can be queried by
the application. Interfaces are used within applications as
var types that provide memory management comparable

to CORBA [4].
The bidirectional communication between proxy and

its referring object is performed with so called communi-
cation channels. Messages sent across a communication
channel are automatically serialized, transmitted, and then
deserialized. For this, a communication channel internally
uses a transport strategy that employs one (or more) serial-
ization strategies. Communication channels are modeled as
first class data type meaning that they can be used and ma-
nipulated like any other object. Therefore, communication
channels provide an explicit binding as opposed to the im-
plicit binding mechanisms that can be found in traditional
middleware.

// connect output jack to input jack
// returns communication channel (stored in _var type)
CommunicationChannel_var cc(out_jack->connectTo(in_jack));
// use the first (best) transport strategy
cc->setTransportStrategy(cc->getStrategyList().front());

// try to get tcp control interface (stored in _var type)
ITCPControl_var itcp(cc->getInterface<ITCPControl>());
if(itcp.get()) {
 // set some parameter
 itcp->setSendBufferSize(2048);
}

// set XML value stream
cc->setValueStream(XMLIValueStream(), XMLOValueStream());

Figure 2. Explicit binding: setting and configuring the
transport strategy and the serialization strategy.

Explicit binding allows for selecting the way in which
the serialization and deserialization is performed. Also,
the networking protocol or technology to be used for data
transport can be chosen and configured (see Figure 2). This
feature is especially important for controlling components
in heterogeneous environments and for streaming multi-
media data between these components. Here, specialized
and optimized serialization strategies and transport strate-
gies can be used to control devices like PDAs or set top
boxes, which might only offer limited resource or propri-
etary networking technologies. We currently provide an
XML serialization strategy and a more efficient strategy us-
ing “magic numbers” where type information is mapped to
predefined numbers during serialization. Both representa-
tions can be directly transmitted over sockets using proto-
cols like TCP or UDP. Another option is the combination of
a serialization and transport strategy that uses the CORBA
any-types for transmission. We currently use The Ace Orb
(TAO) [17] which also provides real-time extensions.

The communication channels are also used to es-
tablish the multimedia data connection between different
nodes in a flow graph. Here, special networking proto-
cols suitable for multimedia data transport can be used, e.g.
RTP [18].

Our architecture also allows to use a stack of serializa-
tion (and corresponding deserialization) strategies: in addi-
tion to an XML serialization strategy, a strategy for com-
pressing the XML representation can be appended prior to
transmission.

While establishing a communication channel, an ap-
plication can also use a negotiation mechanism that auto-
matically selects strategies for serialization and transport.
If for example a communication channel to a locally op-
erating node is established, the pointer forwarding strategy
would be chosen, because it is the most efficient one. This
strategy simply forwards the pointer to a message between
two objects.

Although CORBA and other distributed object envi-
ronments (DOE) also employ the proxy pattern, our frame-
work only uses these middleware facilities as one possi-
ble solution among others for realizing access to remote
objects. Our approach provides an open architecture that
offers the transparent and flexible usage of different net-

Proxy ProxyProxy

Display
Node

Network

 Application

AnalogTV
Node

Proxy

Event passing
Method call
Listener notification
Communication channel

Jack Jack

TVTuner
Interface

Figure 3. A remote node is controlled via an interface and
connected to the local display.

working and middleware technologies [16]. This allows us
to use different specialized solutions with low resource re-
quirements, which is especially important in heterogeneous
environments with mobile devices.

Figure 3 shows the overall structure of a distributed
flow graph. Here, a remote node representing a PCI
board for receiving digitized video from analog TV
(AnalogTVNode) is connected to a local display (Dis-
playNode). These two nodes are controlled by the appli-
cation via their proxy objects. Similarly, the jacks of the
nodes are controlled through corresponding proxy jacks.
The application can control the specific functionality of the
source node with the corresponding interface (TVTunerIn-
terface).

3.3 Distributed Registry and Migration

The registry service provided by NMM allows discovery,
reservation, and instantiation of nodes available on local
and remote hosts. In this step, the application sends a re-
quest to a local or remote registry. This request can in-
clude the specific type of a node (e.g. “AnalogTVNode”),
the provided interfaces (e.g. “TVTuner”), or the supported
formats (e.g. “video/raw”). Again, proxies and commu-
nication channels are used to contact the registry service.
Nodes are then created by a factory either on the local or
remote host. The registry also administrates resources like
network bandwidth and computing power.

The NMM architecture also allows nodes connected
in a flow graph to migrate to a different host during run-
time (session hand off). In this step, the registry service of
the new host is queried for the wanted node. Then upon in-
stantiating the node, only the communication channels for
control and data transmission have to be updated. The ap-
plication still uses the same proxy object for controlling the
object.

<configuration>
 <menu id="MainMenu" background="main.png"
 	needvideo="no" needaudio="no">
 <entry index = "1"
 on = "dvd.on.png" off = "dvd.off.png"
 x = "60" y = "200">DVDPlayer</entry>
 <entry index = "2"
 on = "mp3.on.png" off = "mp3.off.png"
 x = "330" y = "200">MP3Player</entry>
 </menu>

 <mp3play id="MP3Player" background="mp3.png"
	 needvideo="no" needaudio="yes">
 </mp3play>

 <dvdplay id="DVDPlayer" background="dvd.png"
	 needvideo="yes" needaudio="yes">
 </dvdplay>
</configuration>

Figure 4. XML configuration with main menu including
DVD and MP3 player.

4 Application Framework

Our overall system architecture consists of station-
ary and mobile systems. The stationary systems are
called Multimedia-Box, and provide an integrated and ex-
tensible solution for a multimedia home entertainment cen-
ter. Several of these systems at different location (e.g. dif-
ferent rooms) are connected over a network. The user can
access multimedia data at the stationary systems or at a mo-
bile device, e.g. a PDA, connected via WLAN. The user
can move around with a mobile device, play back multi-
media on the mobile device, or perform a session hand off
to use the capabilities of nearby stationary devices for rich
multimedia playback.

4.1 Multimedia-Box

The design goal for the Multimedia-Box was to create an
open and extensible home entertainment platform on top of
NMM that runs on a commodity Linux-PC with multime-
dia extension boards. This PC is controlled by a remote
control and connected to a TV display and loudspeakers
as in most living room scenarios and then acts as a re-
placement for traditional devices like VCRs, CD and DVD-
players1.

An important aspect in the design of the Multimedia-
Box was easy configuration and extension of the applica-
tion. In addition to easily changing the look of the applica-
tion with so called skins, this requires the ability to adapt
and extend the structure of the application itself. Therefore
the whole application is built as a plug-in architecture that
is assembled using an XML-based configuration language
that describes the hierarchical menu structure the user can
navigate in (see Figure 4). The leaves in this hierarchy are
then the “actions” like DVD playback.

The overall system architecture of the Multimedia-
Box application consists of several interacting parts (see
Figure 5). From the XML-description the application is

1For videos and screen shots, see
www.networkmultimedia.org/Status/MMBox/

ActionState
Video
Output

Audio
Output

ActionState

MenuState

User
input

OSD

Multimedia-Box
Application

XML
parser

Figure 5. Architecture of the Multimedia-Box.

automatically set up: for each menu or action, a MenuState
or an ActionState object is created, respectively. Events
are generated according to user input with a remote con-
trol. These events are forwarded to the currently active
state object. The state objects implement the State de-
sign pattern [19]. Depending on the received events the
active state objects performs an internal state transitions
(e.g. from “play” to “pause”) or an external state transi-
tion by activating another state object. The sink nodes for
audio and video output can be used by all states, but only
the currently activated state is connected to them. Addi-
tionally a node for blending on-screen elements onto the
current background (OSD) is inserted before the video sink
node. Figure 5 shows the DVD state being activated and its
simplified flow graph for DVD playback being connected
to the common sink nodes. Notice, that the figure shows
only the connected nodes; the proxies being controlled by
the application are not shown for simplicity. Internally all
states are realized as flow graphs of NMM nodes like the
one in Figure 3.

Our current implementation provides ActionState ob-
jects for audio CD playback, MP3 encoding of an audio
CD, MP3 playback including navigation in the directory
structure, DVD playback, transcoding of multimedia data
like DVDs to other formats, TV access with time-shifting,
programming of video recordings, and a browser and me-
dia player for all supported media types, including MPEG4,
Ogg/Vorbis, and many other. For receiving TV programs
two options are supported. A DVB-board directly receives
MPEG-2 encoded digital TV, while for analog TV we use
a combination of a TV-tuner board and a cheap KFIR
MPEG-encoder board.

With the application framework, integrating a new
action, for instance a video conferencing application, is
straightforward. All that needs to be done is implement-
ing a new ActionState object identified by a unique string
and adding a new menu entry in the XML configuration.
Also, special versions of the Multimedia-Box that are not
connected to a TV but only provide audio output can be
configured easily by modifying the menu structure in the
XML configuration file.

In addition to being able to navigate the hierarchy of
states, our application framework also supports multitask-

MenuState
Video
Output

Audio
OutputActionState

MP3Player

User
input

OSD

Multimedia-Box
Application

Figure 6. The MP3 player is put to background by a menu
state but keeps on playing music.

ing. The user can put a running state to background or
reactivate a state running in background. States running in
the background get a lower priority assigned. In addition,
if the currently running state is to be replaced with a new
state, the application framework disconnects the running
state from the audio and video output only if the new state
is configured to need one or both of these outputs. E.g. the
DVD state will require both audio and video while the MP3
state only needs the audio output and a menu needs neither
audio nor video. This behavior is also to be set in the XML
configuration (see needaudio and needvideo in Figure 4).

4.2 Networked Home Entertainment

As all ActionStates are realized as flow graphs of NMM
nodes, the distribution of workload to remote hosts can
also be performed very easy. This is especially useful for
resource consuming tasks like transcoding of audio and
video. The nodes performing these tasks are requested
from a remote registry while the proxies to control these
nodes still reside within the local Multimedia-Box applica-
tion.

Furthermore, the Multimedia-Box can transparently
use distributed devices: if the local host does not provide
the possibility to receive TV, the application searches for
the required NMM node (a node that provides the “TV-
Tuner” interface) on remote hosts and then integrates them
into a flow graph as described in Section 3.

4.3 Multimedia Access for Mobile Users

Our middleware can also be used on mobile devices like the
iPAQ PDA running under Linux and using WLAN. Also,
the application framework running the PDA is similar to
the one running on the Multimedia-Box. The user interface
offers the same appearance and behavior as on the station-
ary system. We currently provide a state for playback of
audio files (e.g. MP3) on the mobile device.

The user can either play back audio on the mobile de-
vice or perform a session hand off to a remote host in the
proximity of the user to enjoy better audio output than pro-
vided by the mobile device. If the audio is played at the
mobile device all nodes are instantiated locally.

Figure 7 shows the setup when audio is decoded on
a remote stationary host running the Multimedia-Box ap-
plication. Here, the application running on the mobile host

Proxy

Audio
Output

Proxy Proxy

MP3
Decoder

File
Reader

Multimedia-Box
Application

Mobile Application

ActionState

Figure 7. Cooperation of a mobile and a stationary system.

(shaded dark) uses a locally running node for reading a file
from the internal PDA memory. This node is controlled
with the corresponding proxy. To perform the decoding
and playback of the audio on the remote system, the ap-
plication has requested an appropriate audio decoder node
from the remote registry. Notice, that in this step the appli-
cation running on the mobile host uses all facilities of the
underlying NMM middleware, e.g. the dynamic migration
during runtime as described in section 3.

A special state within the Multimedia-Box applica-
tion then gets connected like any other state, the only dif-
ference is that its instantiated nodes are controlled from the
mobile device. Additionally, the application on the mobile
device can request a proxy for the remote audio output, e.g.
for controlling the volume. To this end the mobile device
can be used as a remote control for stationary Multimedia-
Boxes. All nodes are then connected and appropriate com-
munication channels are established, e.g. using WLAN
for connecting from the mobile device. With our current
implementation, the complete setup and hand off requires
about 2 seconds.

5 Conclusions

We have described an home entertainment platform based
on a multimedia middleware that provides transparent con-
trol and cooperation of distributed components with differ-
ent underlying technologies. The application framework
consists of stationary and mobile systems. The stationary
hosts act as an integrated and extensible solution for var-
ious kinds of multimedia entertainment. In addition users
can access multimedia data on mobile devices or transpar-
ently use remote resources like computing power and I/O
capabilities. Future work will concentrate on the provision
of session hand off for distributed rendering of audio and
video on mobile and stationary systems.

References

[1] Microsoft. DirectShow. http://msdn.microsoft.com/.

[2] Apple. Quicktime. http://www.apple.com/quicktime/.

[3] Sun. Java Media Framework.
http://java.sun.com/products/java-media/jmf/.

[4] Object Management Group. http://www.omg.org.

[5] Hewlett-Packard Company and IBM Corporation and
SunSoft Inc. Multimedia System Services.

[6] David Duke and IIvan Herman. A Standard for Multi-
media Middleware. In ACM International Conference
on Multimedia, 1998.

[7] Ken Arnold and Bryan O’Sullivan and Robert W.
Scheifler and Jim Waldo and Ann Wollrath. The Jini
Specification. Addison-Wesley, 1999.

[8] The HAVi Specification - Specification of the
Home Audio/Video Interoperability Architecture.
http://www.havi.org.

[9] Klaus Ilgner and John Cosmas. System Concept for
Interactive Broadcasting Consumer Terminals. In In-
ternational Broadcasting Convention, 2001.

[10] Bostjan Marusic and Marijan Leban. The myTV Sys-
tem - A Digital Interactive Television Platform Im-
plementation. In IEEE International Conference on
Multimedia and Expo (ICME), 2002.

[11] Multimedia Home Platform (MHP).
http://www.mhp.org.

[12] Heribert Baldus, Markus Baumeister, Huib Eggen-
huissen, Andras Montvay, and Wim Stut. WWICE
- An Architecture for In-Home Digital Networks.
In Multimedia Computing and Networking (MMCN),
2000.

[13] Heinz-Josef Eikerling and Frank Berger. Design of
OSGi Compatible Middleware Components for Mo-
bile Multimedia Applications. In Protocols and Sys-
tems for Interactive Distributed Multimedia Systems
(IDMS/PROMS), 2002.

[14] Open Services Gateway Initiative (OSGi).
http://www.osgi.org.

[15] George Coulouris, Hani Naguib, and Scott Mitchell.
Middleware Support for Context-Aware Multimedia
Applications. In Conference on Distributed Applica-
tions and Interoperable Systems (DAIS), 2001.

[16] Marco Lohse, Michael Repplinger, and Philipp
Slusallek. An Open Middleware Architecture for
Network-Integrated Multimedia. In Protocols and
Systems for Interactive Distributed Multimedia Sys-
tems (IDMS/PROMS), 2002.

[17] Douglas C. Schmidt et al. The Ace Orb(TAO).

[18] RTP. http://www.cs.columbia.edu/∼hgs/rtp/.

[19] Erich Gamma, Richard Helm, and Ralph Johnson.
Design Patterns. Addison-Wesley, 1995.

